High spatial resolution Kelvin probe force microscopy with coaxial probes.
نویسندگان
چکیده
Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip-sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy.
منابع مشابه
Magnetic force microscopy using fabricated cobalt-coated carbon nanotubes probes
Magnetic force microscope ( MFM ) is a powerful technique for mapping the magnetic force gradient above the sample surface. Herein, single-wall carbon nanotubes (SWCNT) were used to fabricate MFM probe by dielectrophoresis method which is a reproducible and cost-effective technique. The effect of induced voltage on the deposition manner of carbon nanotubes (CNT) on the atomic force microscope (...
متن کاملSelf-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology
Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit Rev. Current integration force and displacement self-sensing method for cantilevered piezoelectric actuators Rev. Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators Rev. The lateral resolution of many electrical scanning p...
متن کاملGold nanoparticle coated silicon tips for Kelvin probe force microscopy in air.
The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential ...
متن کاملFast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy.
Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two com...
متن کاملHigh Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)
In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2012